A derivative array approach for linear second order differential-algebraic systems
نویسندگان
چکیده
We discuss the solution of linear second order differential-algebraic equations (DAEs) with variable coefficients. Since index reduction and order reduction for higher order, higher index differential-algebraic systems do not commute, appropriate index reduction methods for higher order DAEs are required. We present an index reduction method based on derivative arrays that allows to determine an equivalent second order system of lower index in a numerical computable way. For such an equivalent second order system, an appropriate order reduction method allows the formulation of a suitable first order DAE system of low index that has the same solution components as the original second order system.
منابع مشابه
Ela a Derivative Array Approach for Linear Second Order Differential-algebraic Systems
We discuss the solution of linear second order differential-algebraic equations (DAEs) with variable coefficients. Since index reduction and order reduction for higher order, higher index differential-algebraic systems do not commute, appropriate index reduction methods for higher order DAEs are required. We present an index reduction method based on derivative arrays that allows to determine a...
متن کاملOn second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملSequential second derivative general linear methods for stiff systems
Second derivative general linear methods (SGLMs) as an extension of general linear methods (GLMs) have been introduced to improve the stability and accuracy properties of GLMs. The coefficients of SGLMs are given by six matrices, instead of four matrices for GLMs, which are obtained by solving nonlinear systems of order and usually Runge--Kutta stability conditions. In this p...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملA Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative
The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...
متن کامل